Enantiomerically pure cyclopropylboronic esters: auxiliary- versus substrate-control

Jörg Pietruszka * and Andreas Witt
Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany

Received (in Cambridge, UK) 29th August 2000, Accepted 19th October 2000
First published as an Advance Article on the web 1st December 2000

Stable, enantiomerically pure cyclopropylboronic esters are synthesized from alkynes by a hydroborationcyclopropanation sequence. The direct hydroboration-utilizing 1,3,2-dioxaborolane 4 -is most convenient, however, with more functionalized side-chains it failed to give the desired intermediates. Using the more reactive dicyclohexylborane, followed by oxidation and transesterification, is a good alternative one-pot conversion. Cyclopropanations were performed either following a Simmons-Smith protocol or with diazomethane-palladium(II) acetate. The influence on the diastereoselectivity of the auxiliary $\mathbf{1}$ is compared with the influence of an additional stereogenic center in the side-chain.

Introduction

Cyclopropylboronic esters have attracted considerable interest as general building blocks for cyclopropanes. Since the first reports of their successful synthesis, ${ }^{1-4}$ various groups proved the versatility of this approach, e.g. by demonstrating that the Suzuki coupling of these boron intermediates is possible. ${ }^{5-15}$ Furthermore, after the first diastereoselective cylopropanations by Imai et al., ${ }^{16}$ new auxiliaries, e.g. 1, were developed that

would increase the stability of the cyclopropylboronic esters 2 thus allowing chromatographic separations of the diastereoisomers giving enantiomerically pure cis- ${ }^{17}$ or transdisubstituted ${ }^{11,18,19}$ cyclopropanes. A major set-back was the lack of substrate generality; all model reactions with cyclopropylboronic esters were usually performed with substrates with no additional functional group or stereogenic centers in the side-chain. We now present a detailed account closing this gap.

Results and discussion

We chose different protected propargyl alcohols $\mathbf{3}$ as model compounds for this study. Direct hydroboration of alkynes with 1,3,2-dioxaborolane $\mathbf{4}$ is usually the method of choice to form alkenylboronic esters, however, with functionalized alkynes 3 this changed. Whereas silyl protecting groups (compounds 3a/ b) did not interfere and the synthesis of the corresponding alkenylboronic esters $\mathbf{5 a / b}$ was straightforward (route 1), ethers, acetals and esters (compounds 3c-e) would not allow the convenient formation of olefins $\mathbf{5 c}$ e. In order to achieve the desired transformations we chose a three-step, one-pot sequence using the more reactive dicyclohexylborane (route 2), a protocol that was first employed for various diols by Vaultier et al. ${ }^{20}$ and Hoffmann and Dresely. ${ }^{21}$ The hydroboration to vinylboranes 6 was followed by the selective oxidation with
anhydrous trimethylamine N-oxide ${ }^{22-24}$ and transesterification of the intermediates $\mathbf{7}$ with diol $\mathbf{1}$ to the alkenylboronic esters 5c-e (Scheme 1). Although branched alkynes could also be

3
diol 1, rt \uparrow

a	TBS	91	[ref. 11]	n.p.
b	TPS	60^{a}	n.p.	
c	Bn	(30)	$[$ ref. 11]	47
d	MOM	-	$[$ ref. 11]	38
e	Bz	-	$[$ ref. 11]	60

TBS = $\mathrm{Bu}^{t} \mathrm{Me}_{2} \mathrm{Si} ; \mathrm{TPS}=\mathrm{Bu}^{t} \mathrm{Ph}_{2} \mathrm{Si} ; \mathrm{Bn}=$ benzyl;
$\mathrm{Bz}=$ benzoyl; MOM = methoxymethyl; PG = protecting group; n.p. $=$ not performed; ${ }^{a}$ minor amounts of a regioisomer (Scheme 2) could not be removed.

Scheme 1 Synthesis of alkenylboronic esters 5.
successfully transformed, the diastereomeric products $\mathbf{8}$ could not be obtained in pure form. We succeeded in separating neither the common side-product 9 -which was presumably
formed after incomplete consumption of dicyclohexylborane in the first step-nor the diastereoisomers.

The cyclopropanation was performed with diazomethanepalladium(II) acetate using our optimized reaction conditions (Scheme 2). ${ }^{11}$ The yields were usually high (88-98\%) and the

Scheme 2 Synthesis of cyclopropanes 10 and 11.
diastereomeric ratios moderate to good (dr 66:34 to 86:14). When starting with alkenylboronic ester $\mathbf{5 b}$, we were surprised to isolate not only the desired separated diastereoisomers $\mathbf{1 0 b} / \mathbf{1 1 b}$, but also another unprecedented isomer 12. This is explained by the presence of an additional compound in the starting material whose structure could now be assigned to regioisomer 13.
Next, we addressed the question of the influence of an additional stereogenic center in the side-chain. Starting from 2,3-O-isopropylidene-D-glyceraldehyde $14,{ }^{25-27}$ we first followed a modified ${ }^{28}$ Corey-Fuchs ${ }^{29}$ sequence via the dibromoalkene 15 to alkyne 16 (Scheme 3). We found that the yields were poor, but-even worse-we observed (not surprisingly) partial racemization during the first step. ${ }^{28}$ This was proved by measuring the optical rotation of all intermediates, and later by the formation of diastereomeric hydroboration products. The most convenient synthesis of alkyne $\mathbf{1 6}$ utilizes the Bestmann-Ohira reagent $17 .{ }^{30-35}$ In a single step aldehyde 14 was converted (69\%) without racemization of the starting material.

The following hydroboration was performed by both routes outlined in Scheme 1. Again, we found that the three-step, one-pot sequence-introducing diol $\mathbf{1}$, ent-1 and pinacol in the last step-was superior to the direct hydroboration, furnishing alkenylboronic esters $\mathbf{1 8 - 2 0}$ in $50-80 \%$ yield. The only side-product isolated was the cyclohexylboronic ester 9 (and ent $-\mathbf{9}$, when diol ent-1 was used; the corresponding pinacol derivative was also detected, but could not be obtained).

All three alkenylboronic esters 18-20 were cyclopropanated using our standard conditions (diazomethane-palladium(II) acetate; method A) and the Simmons-Smith reaction, ${ }^{36-38}$ in particular the Furukawa protocol (method B)..39,40 Generally speaking, method A led to higher yields (A: 88-95\%; B: 58$72 \%$), but it was less selective as compared to method B (Fig. 1). The influence of the additional stereogenic center in the side-chain on the diastereomeric ratio depends on the method used. Simplifying, the cyclopropanation with diazomethane can be regarded as predominantly auxiliary-controlled, whereas the Simmons-Smith reactions are substrate-controlled. It is

Scheme 3 Synthesis and hydroboration of alkyne 16.

Olefin	Method	Product	Yield [\%]	dr
$\mathbf{1 8}$	A	$\mathbf{2 1 + 2 2}$	93	$83: 17$
$\mathbf{1 8}$	B	$\mathbf{2 1 + 2 2}$	58	$\mathbf{1 1 : 8 9}$
$\mathbf{1 9}$	A	$\mathbf{2 3 + 2 4}$	95	$50: 50$
$\mathbf{1 9}$	B	$\mathbf{2 3 + 2 4}$	72	$94: 6$
$\mathbf{2 0}$	A	$\mathbf{2 5 + 2 6}$	(88)	$60: 40$
$\mathbf{2 0}$	B	$\mathbf{2 5 + 2 6}$	(60)	$95: 5$

Fig. 1 Diastereoselective cyclopropanation of alkenylboronic esters 18-20.
important to note that just by changing the reaction conditions for the transformation of olefin 18, the ratio of cyclopropylboronic esters 21 :22 could be reversed. Unfortunately, only the

Table 1 Characteristic NMR data of cyclopropylboronic esters; assignment of their absolute configuration

R	Compound	$2^{\prime}-\mathrm{H}$	$3^{\prime}-\mathrm{H}_{\text {trans }}$	C-2'	C-3'	Compound	2'-H	$3^{\prime}-\mathrm{H}_{\text {trans }}$	C-2'	C-3'
TBSOCH ${ }_{2}$	$10 a^{11}$	0.65	0.43	20.0	9.6	$11 a^{11}$	0.99	0.08	20.0	9.8
TPSOCH 2	10b	0.59	0.33	20.2	9.5	11b	0.91	-0.01	20.4	10.1
BnOCH_{2}	10c	0.64	0.46	17.4	10.1	11c	1.00	0.10	17.7	10.1
MOMOCH_{2}	10d	0.66	0.50	17.3	10.0	11d	1.01	0.14	17.5	10.0
BzOCH_{2}	10e	0.68	0.38	16.4	9.9	11e	1.00	0.00	16.7	10.0
Bu^{n}	$10{ }^{11}$	0.26	0.31	18.3	11.7	111 ${ }^{11}$	0.57	-0.06	18.6	11.8
n-Pentyl	$10 \mathrm{~g}^{11}$	0.26	0.31	18.4	11.7	$11 \mathrm{~g}^{11}$	0.57	-0.06	18.6	11.8
$\mathrm{Bu}^{\text {t }}$	$10{ }^{11}$	0.49	0.20	29.4	7.7	$11{ }^{11}$	0.59	-0.26	29.6	7.9
Ph	$10 i^{11}$	1.36	0.80	22.1	15.5	$11 i^{11}$	1.74	0.43	22.7	15.1
HOCH_{2}	$10{ }^{11}$	0.64	0.41	20.4	9.4	111 ${ }^{11}$	1.00	0.06	20.9	9.6
$\mathrm{TPSO}\left(\mathrm{CH}_{2}\right)_{3}$	$10 \mathrm{k}^{11}$	0.25	0.30	18.0	11.5	$11 \mathrm{k}^{11}$	0.58	-0.05	nd^{c}	nd
-	21	0.55	0.35	19.4	7.6	22	0.81	0.11	19.7	9.8
	${ }^{a}$	0.59	0.48	19.5	9.4	b	0.79	-0.04	19.9	7.7

${ }^{a}$ Obtained when the hydroboration-cyclopropanation sequence was performed with partially racemized alkyne 16; the NMR data are identical with the enantiomeric compound 23. ${ }^{b}$ Obtained when the hydroboration-cyclopropanation sequence was performed with partially racemized alkyne 16; the NMR data are identical with the enantiomeric compound $24 .{ }^{c}$ nd: not determined.
boronic esters 21-24 could be separated into the pure diastereoisomers; we were not able to perform this purification with the pinacol-derived compounds 25/26.

Up to this point we took the assignment of the absolute configurations for granted. In fact, we have already shown that the ${ }^{1} \mathrm{H}$ NMR shifts for the $2^{\prime}-\mathrm{H}$ and the $3^{\prime}-\mathrm{H}_{\text {trans }}$ protons of the cyclopropane moiety are diagnostic. ${ }^{11}$ As can be seen from Table 1, all new compounds match perfectly in the series. Apart from these characteristic relative high-field shifts of the $2^{\prime}-\mathrm{H}$ protons and down-field shifts of the $3^{\prime}-\mathrm{H}_{\text {trans }}$ protons (major relative to minor diastereoisomer), the ${ }^{13} \mathrm{C}$ NMR data are also to a certain extent diagnostic. In particular the $\mathrm{C}-2^{\prime}$ carbons are all shifted to high fields for the major diastereomers; the data for the $\mathrm{C}-3^{\prime}$ carbons are less reliable and depend on the nature of the side-chain.

For the diastereoisomers 25 (26) we had no precedent to establish the absolute configuration via the NMR data. Consequently, we performed a chemical correlation. Transformation of boronic ester $\mathbf{2 5}$ by a Matteson homologation ${ }^{41}$ yielded the primary alcohol 27, a product whose enantiomer had

Scheme 4 Determination of the absolute configuration of cyclopropylboronic ester 25.
previously been reported (Scheme 4). ${ }^{42}$ No sequential insertion was observed. ${ }^{43}$ The cyclopropane derivative 27 itself was proposed to be a key intermediate for the construction of the right hand fragment of solandelactones, e.g. solandelactone E. ${ }^{44,45}$

Conclusion

A sequence for the synthesis of a variety of enantiomerically pure cyclopropylboronic esters $\mathbf{1 0 / 1 1}$ has been established. The flexible approach allowed the isolation not only of products with more functionalized side-chains, but also enabled the investigation of the influence of additional stereogenic centers in the substrate $(\mathbf{1 8}-\mathbf{2 0})$ on the diastereoselectivity. The investigation proved that depending on the cyclopropanation condition the reaction was either predominantly substratecontrolled (Simmons-Smith protocol) or auxiliary-controlled (diazomethane-palladium(iI) acetate). The absolute configurations of all products were confirmed by means of characteristic NMR data of the boronic esters or by chemical correlation. As a consequence, an advanced intermediate 27 for the total synthesis of solandelactones was isolated.

Experimental

All reagents were used as purchased from commercial suppliers without further purification. The alkynes 3 were synthesized using standard procedures and the spectroscopic data were in agreement with published data. ${ }^{46-49}$ Aldehyde 14^{25-27} and the Bestmann-Ohira reagent $\mathbf{1 7}^{\mathbf{3 0 - 3 5}}$ were prepared according to the references given. The reactions were carried out using standard Schlenk techniques under a dry nitrogen atmosphere. Glassware was oven-dried at $150^{\circ} \mathrm{C}$ overnight. Solvents were dried and purified by conventional methods prior to use; diethyl ether, 1,2-dimethoxyethane, and tetrahydrofuran were freshly distilled from sodium-benzophenone. Petroleum ether refers to the fraction with a boiling point between 40 and $60^{\circ} \mathrm{C}$. Caution: The generation and handling of diazomethane requires special precautions. ${ }^{50-52}$ Flash-column chromatography: Merck silica gel 60, 0.040-0.063 mm (230-400 mesh). TLC: Pre-coated sheets, Alugram SIL G/UV 254 Macherey-Nagel; detection by UV extinction or by cerium molybdenum solution [phosphomolybdic acid (25 g), $\mathrm{Ce}\left(\mathrm{SO}_{4}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~g})$, conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(60 \mathrm{~mL})$, $\mathrm{H}_{2} \mathrm{O}(940 \mathrm{~mL})$]. Preparative MPLC: Gilson (Spectrochrom), with a packed column $(49 \times 500 \mathrm{~mm})$, LiChroprep, Si60 (15-25 $\mu \mathrm{m}$), and UV detector (259 nm). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded-at room temperature in CDCl_{3} unless otherwise
indicated-on a Bruker A 500. Chemical shifts δ are given in ppm relative to resonances of the solvent (${ }^{1} \mathrm{H}: \mathrm{CHCl}_{3}, 7.25$ $\mathrm{ppm} ;{ }^{13} \mathrm{C}: \mathrm{CDCl}_{3}, 77.0 \mathrm{ppm}$), coupling constants J are given in hertz; in spectra of higher order δ and J values were not corrected. ${ }^{13} \mathrm{C}$ signals were assigned by means of $\mathrm{C}-\mathrm{H}-$ and $\mathrm{H}-$ H-COSY spectra. Microanalysis: performed at the Institut für Organische Chemie, Stuttgart. Melting points (Büchi 510) were not corrected. Specific rotations were measured at $21^{\circ} \mathrm{C}$ unless otherwise stated; $[a]_{\mathrm{D}}$ values are given in $10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}$.

Preparation of alkenylboronic esters

General procedure A (route 1). Diol 1 (1 equiv.) was carefully dried at $50^{\circ} \mathrm{C}$ under reduced pressure for 1 h . Under an atmosphere of nitrogen, dichloromethane (1 mL per 2 mmol diol $\mathbf{1}$) was added and the solution cooled to $0{ }^{\circ} \mathrm{C} . \mathrm{BH}_{3} \cdot \mathrm{SMe}_{2}$ complex (1.2 equiv. of a 12 M solution in dimethyl sulfide) was added dropwise with vigorous stirring, followed by refluxing the mixture for 4 h . The solvent was removed, the reagent cooled to $0^{\circ} \mathrm{C}$, and the alkyne (1.5 equiv.) slowly added. The flask was closed with a septum, slowly heated to $120^{\circ} \mathrm{C}$ and kept at this temperature for 12 h . After cooling to room temperature standard work-up followed, ${ }^{11,18,19}$ giving alkenylboronic esters. The yields are given in Scheme 1; the reaction was typically performed on a $1-2 \mathrm{mmol}$ scale.

General procedure B (route 2). ${ }^{21}$ Under an atmosphere of dry nitrogen $\mathrm{BH}_{3} \cdot \mathrm{SMe}_{2}$ complex (1.0 equiv. of a 12 M solution in dimethyl sulfide) in 1,2-dimethoxyethane (1 mL per mmol borane) was cooled to $0^{\circ} \mathrm{C}$. After addition of cyclohexene (2.0 equiv.) and removal of the cooling bath, a colourless precipitate formed. After 2 h the reaction mixture was cooled to $0^{\circ} \mathrm{C}$, followed by the addition of the appropriate alkyne (1.3-1.5 equiv.). The mixture was stirred at this temperature for 15 min , then allowed to warm to room temperature. Stirring was continued for $2-4 \mathrm{~h}$, during which time a clear solution formed. Trimethylamine N-oxide ${ }^{22-24}$ (2 equiv.) was carefully added at a rate keeping the reaction under gentle reflux. After 2 h at room temperature the diol $\mathbf{1}$ (1 equiv.) was added. The reaction mixture was stirred until complete consumption (as judged by TLC) of diol $\mathbf{1}$ was indicated. The solvent was removed under reduced pressure and the crude product subjected to flashcolumn chromatography on silica gel, eluting with petroleum ether-diethyl ether ($12: 1$ to $4: 1$). The yields are given in Scheme 1 ; the reaction was typically performed on a $1-40 \mathrm{mmol}$ scale.

(4R,5R)-2-[(E)-2-(tert-Butyldiphenylsiloxymethyl)ethenyl]-

 4,5-bis[methoxydiphenylmethyl]-1,3,2-dioxaborolane (5b). Yield 60% (route 1), white foam; softening range $=69-75^{\circ} \mathrm{C} ;[a]_{\mathrm{D}}$ -30.5 (c 0.40 in CHCl_{3}) (Found: C, 77.38 ; H, 6.89. $\mathrm{C}_{49} \mathrm{H}_{51} \mathrm{BO}_{5} \mathrm{Si}$ requires C, 77.56 ; H, 6.77\%); IR (film)/ $\mathrm{cm}^{-1} 2932$, 2857, 2360, 1341 and 1077; NMR $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.93$ (9 $\left.\mathrm{H}, \mathrm{s}, M e_{3} \mathrm{C}\right), 2.92(6 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.02\left(2 \mathrm{H}, \mathrm{dd}, J 3.5\right.$ and $1.8,1^{\prime \prime}-$ H), $5.28(2 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}$ and $5-\mathrm{H}), 5.43\left(1 \mathrm{H}, \mathrm{dt}, J 18.0\right.$ and $1.8,1^{\prime}-$ H), $6.16\left(1 \mathrm{H}, \mathrm{dt}, J 18.0\right.$ and $\left.3.5,2^{\prime}-\mathrm{H}\right), 7.17-7.53(30 \mathrm{H}, \mathrm{m}$, $\mathrm{Ar} H) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 19.7\left(\mathrm{Me}_{3} \mathrm{C}\right)$, $27.2\left(\mathrm{Me}_{3} \mathrm{C}\right), 52.3$ (OMe), 65.5 (C-1"), 78.1 (C-4/C-5), $83.8\left(\mathrm{CPh}_{2} \mathrm{OMe}\right), \sim 118(\mathrm{br}$, C-1'), 127.7 (Ar), 127.9 (Ar), 128.0 (Ar), 128.2 (Ar), 128.7 (Ar), 128.9 (Ar), 129.9 (Ar), $130.0(\mathrm{Ar}), 134.0(\mathrm{Ar}), 135.8(\mathrm{Ar}), 141.5$ (Ar), 141.9 (Ar), 151.4 (C-2'); m / z (EI) 758 (0.3%), 726 (10) and 197 (100). The NMR spectra indicated that the sample was a mixture of the title compound containing minor amounts ($<10 \%$) of boronic ester 13. Separation was not possible at this stage; the structure of compound $\mathbf{1 3}$ was indirectly elucidated by isolating the corresponding cyclopropanation product.(4R,5R)-2-[(E)-2-(Benzyloxymethyl)ethenyl]-4,5-bis[meth-oxydiphenylmethyl]-1,3,2-dioxaborolane (5c). Yield 47\% (route 2), white foam; softening range $=65-72{ }^{\circ} \mathrm{C} ;[a]_{\mathrm{D}}-46.1$ (c 0.90
in CHCl_{3}) (Found: C, 78.44; $\mathrm{H}, 6.45 . \mathrm{C}_{40} \mathrm{H}_{39} \mathrm{BO}_{5}$ requires C, $78.69 ; \mathrm{H}, 6.44 \%$); IR (film)/ $\mathrm{cm}^{-1} 3039,3005,1344$ and 1061 ; NMR $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.92(6 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.86(2 \mathrm{H}, \mathrm{dd}$, $J 4.8$ and $\left.1.5,1^{\prime \prime}-\mathrm{H}\right), 4.33\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2} \mathrm{O}\right), 5.27(1 \mathrm{H}, \mathrm{dt}, J 18.1$ and $\left.1.5,1^{\prime}-\mathrm{H}\right), 5.28(2 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}$ and $5-\mathrm{H}), 6.17(1 \mathrm{H}, \mathrm{dt}, J 18.1$ and 4.8, $\left.2^{\prime}-\mathrm{H}\right), 7.17-7.53(25 \mathrm{H}, \mathrm{m}, \operatorname{Ar} H) ; \delta_{\mathrm{C}}(125 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 51.8(\mathrm{OMe}), 71.6\left(\mathrm{C}-1^{\prime \prime}\right), 71.9\left(\mathrm{PhCH}_{2} \mathrm{O}\right), 77.7(\mathrm{C}-4 / \mathrm{C}-$ 5), $83.8\left(\mathrm{CPh}_{2} \mathrm{OMe}\right), \sim 119\left(\mathrm{br}, \mathrm{C}-1{ }^{\prime}\right), 127.3(\mathrm{Ar}), 127.3$ (Ar), 127.5 (Ar), 127.6 (Ar), 127.6 (Ar), 127.8 (Ar), 128.3 (Ar), 128.5 (Ar), 129.7 (Ar), 138.2 (Ar), 141.1 (Ar), 141.4 (Ar), 148.7 $\left(\mathrm{C}-2^{\prime}\right) ; m / z(\mathrm{FAB}+\mathrm{NaI}) 633(3 \%)\left[(\mathrm{M}+\mathrm{Na})^{+}\right]$and $197(100)$.
($4 R, 5 R$)-4,5-Bis[methoxydiphenylmethyl]-2-[(E)-2-(methoxy-methoxymethyl)ethenyl]-1,3,2-dioxaborolane (5d). Yield 38\% (route 2), white foam; softening range $=52-59^{\circ} \mathrm{C} ;[a]_{\mathrm{D}}-54.9$ (c 1.10 in CHCl_{3}) (Found: C, $74.52 ; \mathrm{H}, 6.72 . \mathrm{C}_{35} \mathrm{H}_{37} \mathrm{BO}_{6}$ requires C, 74.47 ; H, 6.66\%); IR (film)/cm ${ }^{-1} 3059,3024,1348$ and 1077; NMR $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.92(6 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.23(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{CH}_{2} \mathrm{OMe}\right)$, $3.90\left(2 \mathrm{H}\right.$, complex m, $\left.1^{\prime \prime}-\mathrm{H}\right), 4.46\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}{ }^{-}\right.$ OMe^{2}), $5.24\left(1 \mathrm{H}, \mathrm{dt}, J 18.1\right.$ and $\left.1.8,1^{\prime}-\mathrm{H}\right), 5.27(2 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}$ and $5-\mathrm{H}), 6.13\left(1 \mathrm{H}, \mathrm{dt}, J 18.1\right.$ and $\left.4.7,2^{\prime}-\mathrm{H}\right), 7.18-7.28(20 \mathrm{H}, \mathrm{m}$, $\mathrm{Ar} H) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 51.8(\mathrm{OMe}), 55.2\left(\mathrm{CH}_{2} \mathrm{OMe}\right), 68.4$ (C-1"), 77.7 (C-4/C-5), $83.3\left(\mathrm{CPh}_{2} \mathrm{OMe}\right), 95.5\left(\mathrm{CH}_{2} \mathrm{OMe}\right)$, ~118.5 (br, C-1'), 127.2 (Ar), 127.3 (Ar), 127.5 (Ar), 127.8 (Ar), 128.5 (Ar), 129.7 (Ar), 141.1 (Ar), 141.4 (Ar), 148.2 (C-2'); m/z (EI) 528 (0.1%), 519 (0.1) and 197 (100).
(4R,5R)-2-[(E)-2-(Benzoyloxymethyl)ethenyl]-4,5-bis[meth-oxydiphenylmethyl]-1,3,2-dioxaborolane (5e). Yield 60% (route 2), white foam; softening range $=71-76^{\circ} \mathrm{C} ;[a]_{\mathrm{D}}-47.3(c 1.50$ in CHCl_{3}) (Found: C, 76.72; H, 6.09. $\mathrm{C}_{40} \mathrm{H}_{37} \mathrm{BO}_{6}$ requires C, $76.93 ; \mathrm{H}, 5.97 \%$); IR (film)/ $\mathrm{cm}^{-1} 3059,3031,1723,1348$ and 1076; NMR $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.96(6 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.72$ $\left(2 \mathrm{H}, \mathrm{dd}, J 4.5\right.$ and $\left.1.6,1^{\prime \prime}-\mathrm{H}\right), 5.36(2 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}$ and $5-\mathrm{H})$, 5.40 $\left(1 \mathrm{H}, \mathrm{dt}, J 18.1\right.$ and $\left.1.6,1^{\prime}-\mathrm{H}\right), 6.29(1 \mathrm{H}, \mathrm{dt}, J 18.1$ and 4.5 , $\left.2^{\prime}-\mathrm{H}\right)$, 7.25-7.36 ($\left.20 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H\right), 7.41-7.44(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, 7.53-7.56 ($1 \mathrm{H}, \mathrm{m}, \operatorname{Ar} H), 8.01-8.03(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H) ; \delta_{\mathrm{C}}(125$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 51.8(\mathrm{OMe}), 65.6(\mathrm{C}-1$ 1"), 77.7 (C-4/C-5), 83.3 $\left.\left(\mathrm{CPh}_{2} \mathrm{OMe}\right), \sim 119(\mathrm{br}, \mathrm{C}-1)^{\prime}\right), 127.3(\mathrm{Ar}), 127.3(\mathrm{Ar}), 127.5(\mathrm{Ar})$, 127.8 (Ar), 128.3 (Ar), 128.4 (Ar), 129.6 (Ar), 129.7 (Ar), 130.0 (Ar), 133.0 (Ar), 141.0 (Ar), 141.3 (Ar), 145.4 (C-2'), 165.9 (C=O); m/z (EI) 624 ($<0.3 \%$) and 197 (100).
(4R,5R)-4,5-Bis(methoxydiphenylmethyl)-2-cyclohexyl-1,3,2dioxaborolane (9). White foam; softening range $=95-100^{\circ} \mathrm{C}$; $[a]_{\mathrm{D}}-120$ (c 1.30 in CHCl_{3}) (Found: C, 78.98; H, 7.30. $\mathrm{C}_{36} \mathrm{H}_{39} \mathrm{BO}_{4}$ requires C, 79.12; H, 7.19\%); IR (film) $/ \mathrm{cm}^{-1} 3059$, 2924, 1336 and 1076; NMR $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.33(1 \mathrm{H}, \mathrm{tt}$, $J 12.3$ and $\left.3.3,1^{\prime}-\mathrm{H}\right), 0.68-1.47\left(10 \mathrm{H}, \mathrm{m},-\mathrm{CH}_{2}-\right), 2.93(6 \mathrm{H}, \mathrm{s}$, OMe), $5.18\left(2 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}\right.$ and 5-H), 7.18-7.28 ($20 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H$); δ_{C} ($125 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $22.7\left(\mathrm{C}-1^{\prime}\right), 27.1\left(-\mathrm{CH}_{2}-\right), 27.7\left(-\mathrm{CH}_{2}-\right), 27.8$ $\left(-\mathrm{CH}_{2}-\right), 27.9\left(-\mathrm{CH}_{2}-\right), 28.2\left(-\mathrm{CH}_{2}-\right), 52.1 \quad(\mathrm{OMe}), 83.8$ $\left(\mathrm{CPh}_{2} \mathrm{OMe}\right), 127.5(\mathrm{Ar}), 127.6(\mathrm{Ar}), 127.8(\mathrm{Ar}), 128.1(\mathrm{Ar})$, 128.9 (Ar), 130.2 (Ar), 141.8 (Ar), 141.9 (Ar); m/z (EI) 514 (1\%) and 197 (100).

Cyclopropanation of alkenylboronic esters

General procedure $\mathbf{C}(\boldsymbol{m e t h o d} \mathbf{A})$. The alkenylboronic ester (1 equiv.) was dissolved in diethyl ether (1 mL per mmol boronic ester) and $5 \mathrm{~mol} \%$ palladium(II) acetate added. The suspension was treated for 2 min in an ultrasonic bath. After cooling the mixture to $0^{\circ} \mathrm{C}$, diazomethane ${ }^{50-52}$ (25 mL per mmol boronic ester of an approx. 0.5 M solution in diethyl ether) was slowly ($1 \mathrm{~mL} \mathrm{~min}{ }^{-1}$) added by means of a syringepump. ${ }^{53}$ Unreacted diazomethane was destroyed by stirring the reaction mixture vigorously. Filtration through Celite, evaporation of the solvent under reduced pressure, followed by chromatographic purification led to analytically pure cyclopropylboronic esters. The diastereomeric ratios and yields are
given in Scheme 2; the reaction was typically performed on a $0.3-3 \mathrm{mmol}$ scale.

General procedure D (method B). The alkenylboronic ester (1.0 equiv.) in dichloromethane (1 mL per mmol boronic ester) was added to a pre-formed cyclopropanating reagent [5.0 equiv. diiodomethane dissolved in dichloromethane (10 mL per mmol boronic ester), treated with diethylzinc solution (2.5 equiv. of a 1 M solution in hexane) at $\left.0^{\circ} \mathrm{C}\right]$. Stirring was continued for 12 h at room temperature. After quenching the reaction with saturated aqueous ammonium chloride, the aqueous layer was extracted with dichloromethane ($3 \times$). The combined organic layer was dried over magnesium sulfate and the solvents removed under reduced pressure. The crude product was purified by flash-column chromatography; the reaction was typically performed on a $0.3-6 \mathrm{mmol}$ scale.
($4 R, 5 R, 1^{\prime} S, 2^{\prime} S$)-2-[2-\{tert-Butyl(diphenyl)siloxymethyl\}-cyclopropyl]-4,5-bis[methoxydiphenylmethyl]-1,3,2-dioxaborolane (10b), (4R,5R,1'R,2'R)-2-[2-\{tert-butyl(diphenyl)sil-oxymethyl\}cyclopropyl]-4,5-bis[methoxydiphenylmethyl]-1,3,2dioxaborolane (11b), and ($4 R, 5 R$)-2-[1-\{tert-butyl(diphenyl)siloxymethyl cyclopropyl]-4,5-bis(methoxydiphenylmethyl)-
1,3,2-dioxaborolane (12). Yield 90% (general procedure C), white foam (Found: C, 77.39; H, 7.26. $\mathrm{C}_{50} \mathrm{H}_{53} \mathrm{BO}_{5} \mathrm{Si}$ requires C, 77.70 ; H, 6.91%); IR (film)/ cm^{-1} 2931, 2856, 2360, 1388 and $1076 ; \mathrm{m} / \mathrm{z}$ (EI) 772 (0.1%), 740 (0.1) and 197 (100). The diastereoisomers $\mathbf{1 0 b}$ and 11b, and the regioisomer $\mathbf{1 2}$ were separated by means of MPLC (0.3% ethyl acetate in petroleum ether).

Major diastereoisomer 10b (second eluted): softening range $=69-71{ }^{\circ} \mathrm{C} ;[a]_{\mathrm{D}}-26.7\left(c 0.60\right.$ in $\left.\mathrm{CHCl}_{3}\right)$; NMR $\delta_{\mathrm{H}}(500$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-0.66\left(1 \mathrm{H}\right.$, ddd, $J 9.5,6.4$, and $\left.5.4 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right)$, $0.28\left(1 \mathrm{H}, \mathrm{ddd}, J 9.5,5.3\right.$, and $\left.3.3 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}_{c i s}\right), 0.33(1 \mathrm{H}$, ddd, $J 7.7,6.5$, and $3.3 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime}-\mathrm{H}_{\text {trans }}$), 0.59 (1 H , complex $\mathrm{m}, 2^{\prime}-$ H), $0.91\left(9 \mathrm{H}, \mathrm{s}, M e_{3} \mathrm{C}\right), 2.91(6 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.16(1 \mathrm{H}, \mathrm{dd}, J 10.5$ and $\left.6.2,1^{\prime \prime}-\mathrm{H}_{\mathrm{a}}\right), 3.54\left(1 \mathrm{H}, \mathrm{dd}, J 10.5\right.$ and $\left.4.6,1^{\prime \prime}-\mathrm{H}_{\mathrm{b}}\right), 5.17(2 \mathrm{H}$, $\mathrm{s}, 4-\mathrm{H}$ and $5-\mathrm{H}), 7.16-7.55(30 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H) ; \delta_{\mathrm{C}}(125 \mathrm{MHz} ;$ CDCl_{3}) -3 (br, C-1'), 9.5 (C-3'), $19.6\left(\mathrm{Me}_{3} \mathrm{C}\right), 20.2\left(\mathrm{C}-2^{\prime}\right), 27.2$ $\left(\mathrm{Me}_{3} \mathrm{C}\right), 52.2$ (OMe), 67.3 (C-1"), 78.0 (C-4/C-5), 83.7 $\left(\mathrm{CPh}_{2} \mathrm{OMe}\right), 127.6(\mathrm{Ar}), 127.6(\mathrm{Ar}), 127.8(\mathrm{Ar}), 127.9(\mathrm{Ar})$, $128.0(\mathrm{Ar}), 128.2(\mathrm{Ar}), 128.8(\mathrm{Ar}), 129.9(\mathrm{Ar}), 130.0(\mathrm{Ar}), 134.3$ (Ar), 136.0 (Ar), 141.6 (Ar), 141.8 (Ar).
Minor diastereoisomer 11b (third eluted): softening range $=67-70^{\circ} \mathrm{C} ;[a]_{\mathrm{D}}-77.7\left(c 1.20\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;$ NMR $\delta_{\mathrm{H}}(500$ MHz ; $\left.\mathrm{CDCl}_{3}\right)-0.75\left(1 \mathrm{H}\right.$, ddd, $J 9.9,5.8$, and $\left.5.6 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right)$, $-0.01\left(1 \mathrm{H}\right.$, ddd, $J 7.7,6.0$, and $\left.3.4 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime}-\mathrm{H}_{\text {trans }}\right), 0.20$ $\left(1 \mathrm{H}\right.$, ddd, $J 9.9,5.2$, and $\left.3.4 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}_{\text {cis }}\right), 0.81(1 \mathrm{H}$, complex m, $\left.2^{\prime}-\mathrm{H}\right), 0.93\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{3} \mathrm{C}\right), 2.93(6 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.05(1 \mathrm{H}, \mathrm{dd}$, $J 10.7$ and $\left.7.2,1^{\prime \prime}-\mathrm{H}_{\mathrm{a}}\right), 3.53\left(1 \mathrm{H}\right.$, dd, $J 10.7$ and $\left.4.8,1^{\prime \prime}-\mathrm{H}_{\mathrm{b}}\right), 5.17$ ($2 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}$ and $5-\mathrm{H}$), $7.16-7.54(30 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H) ; \delta_{\mathrm{C}}(125 \mathrm{MHz}$; CDCl_{3}) -3 (br, $\mathrm{C}-1^{\prime}$), 10.1 (C-3'), $19.6\left(\mathrm{Me}_{3} \mathrm{C}\right), 20.4\left(\mathrm{C}-2^{\prime}\right), 27.3$ $\left(\mathrm{Me}_{3} \mathrm{C}\right), 52.1$ (OMe), 68.2 (C-1"), 77.9 (C-4/C-5), 83.7 $\left(\mathrm{CPh}_{2} \mathrm{OMe}\right), 127.5(\mathrm{Ar}), 127.6(\mathrm{Ar}), 127.8(\mathrm{Ar}), 127.9$ (Ar), 128.2 (Ar), 128.8 (Ar), 128.9 (Ar), 129.9 (Ar), 130.1 (Ar), 134.3 (Ar), 136.0 (Ar), 141.6 (Ar), 141.8 (Ar).

Regioisomer 12 (first eluted): colourless oil; $[a]_{\mathrm{D}}-55.5$ (c 0.70 in $\left.\mathrm{CHCl}_{3}\right)$; NMR $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-0.14(1 \mathrm{H}$, ddd, $J 8.9,5.8$, and 2.8 Hz , cyclopropyl- H_{a}), $0.24(1 \mathrm{H}$, ddd, $J 8.9,5.8$, and 2.8 Hz , cyclopropyl- H_{b}), $0.29(1 \mathrm{H}$, ddd, J $8.9,5.8$, and 3.2 Hz , cyclopropyl-H H_{c}, $0.34(1 \mathrm{H}$, ddd, $J 8.9,5.8$, and 3.2 Hz , cyclopropyl- H_{d}), $0.80\left(9 \mathrm{H}, \mathrm{s}, M e_{3} \mathrm{C}\right), 2.91(6 \mathrm{H}, \mathrm{s}$, OMe), $3.09\left(1 \mathrm{H}, \mathrm{d}, J 10.1,1^{\prime \prime}-\mathrm{H}_{\mathrm{a}}\right), 3.13\left(1 \mathrm{H}, \mathrm{d}, J 10.1,1^{\prime \prime}-\mathrm{H}_{\mathrm{b}}\right)$, $5.19(2 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}$ and $5-\mathrm{H}), 7.14-7.49(30 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}(125$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-9.5$ (br, C-1'), 9.7 (C-2'), $18.3\left(\mathrm{Me}_{3} \mathrm{C}\right), 19.6$ (C-3'), 27.2 ($\mathrm{Me}_{3} \mathrm{C}$), 52.2 (OMe), 66.9 ($\mathrm{C}-1^{\prime \prime}$), 78.1 (C-4/C-5), $83.8\left(\mathrm{CPh}_{2} \mathrm{OMe}\right), 127.6$ (Ar), 127.7 (Ar), $127.8(\mathrm{Ar}), 127.9(\mathrm{Ar})$, 128.2 (Ar), 128.8 (Ar), 129.7 (Ar), 130.2 (Ar), $136.0(\mathrm{Ar}), 136.1$ (Ar), 141.8 (Ar), 142.0 (Ar).
($4 R, 5 R, 1^{\prime} S, 2^{\prime} S$)-2-[2-(Benzyloxymethyl)cyclopropyl]-4,5-bis-[methoxydiphenylmethyl]-1,3,2-dioxaborolane (10c) and (4R,5R, $1^{\prime} R, 2^{\prime} R$)-2-[2-(benzyloxymethyl)cyclopropyl]-4,5-bis[methoxy-diphenylmethyl]-1,3,2-dioxaborolane (11c). Yield 88% (general procedure C), white foam (Found: C, 78.49 ; $\mathrm{H}, 6.75 . \mathrm{C}_{41} \mathrm{H}_{41} \mathrm{BO}_{5}$ requires C, 78.84; H, 6.62\%); IR (film)/cm ${ }^{-1} 3039,3002,1352$ and 1061; m/z $(\mathrm{FAB}+\mathrm{NaI}) 647(0.1 \%)\left[(\mathrm{M}+\mathrm{Na})^{+}\right]$and 197 (100). The diastereoisomers 10c and 11c were separated by means of MPLC (2% ethyl acetate in petroleum ether).

Major diastereoisomer 10c (second eluted): softening range $=68-71{ }^{\circ} \mathrm{C} ;[a]_{\mathrm{D}}-48.5\left(c 1.00\right.$ in $\left.\mathrm{CHCl}_{3}\right)$; NMR $\delta_{\mathrm{H}}(500$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-0.69\left(1 \mathrm{H}\right.$, ddd, $J 9.5,6.3$, and $\left.5.3 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right)$, $0.29\left(1 \mathrm{H}, \mathrm{ddd}, J 9.5,5.2\right.$, and $\left.3.5 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}_{c i s}\right), 0.46(1 \mathrm{H}$, ddd, $J 8.4,6.3$, and $3.5 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}_{\text {trans }}$), 0.64 (1 H , ddddd, $J 8.4$, $7.8,5.3,5.2$ and $\left.5.2 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}\right), 2.85\left(1 \mathrm{H}, \mathrm{dd}, J 10.2\right.$ and $7.8,1^{\prime \prime}-$ $\left.\mathrm{H}_{\mathrm{a}}\right), 2.95(6 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.38\left(1 \mathrm{H}, \mathrm{dd}, J 10.2\right.$ and $\left.5.2,1^{\prime \prime}-\mathrm{H}_{\mathrm{b}}\right)$, $4.37\left(1 \mathrm{H}, \mathrm{d}, J\right.$ 12.1, $\left.\mathrm{PhCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{O}\right), 4.43(1 \mathrm{H}, \mathrm{d}, J 12.1$, $\left.\mathrm{PhCH}_{\mathrm{a}} \mathrm{H}_{b} \mathrm{O}\right), 5.21(2 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}$ and 5-H), 7.18-7.31 ($25 \mathrm{H}, \mathrm{m}$, $\mathrm{Ar} H$); $\delta_{\mathrm{C}}\left(125 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) -3 (br, C-1'), 10.1 (C-3'), 17.4 (C-2'), $51.7(\mathrm{OMe}), 72.3\left(\mathrm{PhCH}_{2} \mathrm{O}\right), 74.6\left(\mathrm{C}-1^{\prime \prime}\right), 77.5(\mathrm{C}-4 / \mathrm{C}-5)$, $83.2\left(\mathrm{CPh}_{2} \mathrm{OMe}\right), 127.2$ (Ar), 127.4 (Ar), 127.5 (Ar), 127.5 (Ar), 127.7 (Ar), 127.9 (Ar), 128.3 (Ar), 128.3 (Ar), 129.7 (Ar), 138.6 (Ar), 141.2 (Ar), 141.3 (Ar).

Minor diastereoisomer 11c (first eluted): softening range $=79-83^{\circ} \mathrm{C}$; $[a]_{\mathrm{D}}-89.0\left(c 0.60\right.$ in $\left.\mathrm{CHCl}_{3}\right)$; NMR $\delta_{\mathrm{H}}(500$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) $-0.69\left(1 \mathrm{H}\right.$, ddd, $J 9.9,6.2$, and $\left.5.4 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right)$, $0.10\left(1 \mathrm{H}\right.$, ddd, $J 8.5,6.2$, and $\left.3.5 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}_{\text {trans }}\right), 0.23(1 \mathrm{H}$, ddd, $J 9.9,5.2$, and $\left.3.5 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}_{c i s}\right), 1.00(1 \mathrm{H}$, ddddd, $J 8.5,7.6$, $5.4,5.2$ and $\left.5.2 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}\right), 2.92\left(1 \mathrm{H}, \mathrm{dd}, J 10.2\right.$ and $\left.7.6,1^{\prime \prime}-\mathrm{H}_{\mathrm{a}}\right)$, $2.95(6 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.27\left(1 \mathrm{H}\right.$, dd, $J 10.2$ and $\left.5.2,1^{\prime \prime}-\mathrm{H}_{\mathrm{b}}\right), 4.35$ $\left(1 \mathrm{H}, \mathrm{d}, J 12.0, \mathrm{PhC} H_{a} \mathrm{H}_{\mathrm{b}} \mathrm{O}\right), 4.38\left(1 \mathrm{H}, \mathrm{d}, J 12.0, \mathrm{PhCH}_{\mathrm{a}} H_{b} \mathrm{O}\right)$, $5.21(2 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}$ and $5-\mathrm{H}), 7.17-7.39(25 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H)$; δ_{C} ($125 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) -2 (br, C-1'), 10.1 (C-3'), 17.7 (C-2'), 51.7 (OMe), 72.4 ($\mathrm{Ph} \mathrm{CH}_{2} \mathrm{O}$), 74.8 ($\mathrm{C}-1$ 1"), 77.5 ($\mathrm{C}-4 / \mathrm{C}-5$), 83.3 ($\mathrm{CPh}_{2} \mathrm{OMe}$), 127.2 (Ar$)$, 127.3 (Ar), 127.4 (Ar), 127.5 (Ar), 127.6 (Ar), 127.8 (Ar), 128.3 (Ar), 128.4 (Ar), 129.7 (Ar), 138.5 (Ar), 141.2 (Ar), 141.3 (Ar).
($\left.4 R, 5 R, 1^{\prime} S, 2^{\prime} S\right)$-4,5-Bis[methoxydiphenylmethyl]-2-[2-\{methoxymethoxymethyl\}cyclopropyl]-1,3,2-dioxaborolane (10d) and (4R,5R, $1^{\prime} R, 2^{\prime} R$)-4,5-bis[methoxydiphenylmethyl]-2-[2-\{methoxymethoxymethyl\}cyclopropyl]-1,3,2-dioxaborolane
(11d). Yield 98% (general procedure C), white foam (Found: C, $74.60 ; \mathrm{H}, 6.90 . \mathrm{C}_{36} \mathrm{H}_{39} \mathrm{BO}_{6}$ requires C, $74.74 ; \mathrm{H}, 6.80 \%$); IR (film) $/ \mathrm{cm}^{-1} 3058,2983,1386$ and 1076; m/z (EI) $578(0.1 \%), 546$ (1) and 197 (100). Only the major diastereoisomers 10d could be separated by means of MPLC (2% ethyl acetate in petroleum ether) and fully characterized; the NMR data of boronic ester 11d (in Table 1) were obtained from the mixture.

Major diastereoisomer 10d (second eluted): softening range $=100-102{ }^{\circ} \mathrm{C} ;[a]_{\mathrm{D}}-52.8\left(c 1.00\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \mathrm{NMR} \delta_{\mathrm{H}}$ ($500 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $-0.64\left(1 \mathrm{H}\right.$, ddd, $J 9.5,6.3$, and $5.3 \mathrm{~Hz}, 1^{\prime}-$ H), $0.34\left(1 \mathrm{H}\right.$, ddd, $J 9.5,5.2$, and $\left.3.5 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}_{c i s}\right), 0.50(1 \mathrm{H}$, ddd, $J 8.5,6.3$, and $\left.3.5 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}_{\text {trann }}\right)$, $0.66(1 \mathrm{H}$, ddddd, $J 8.5,7.9,5.3,5.3$ and $\left.5.2 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}\right), 2.95(1 \mathrm{H}, \mathrm{dd}, J 10.4$ and $7.9,1^{\prime \prime}-\mathrm{H}_{\mathrm{a}}$), $3.00(6 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.31\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{OMe}\right), 3.46$ (1 H , dd, $J 10.4$ and $5.3,1^{\prime \prime}-\mathrm{H}_{\mathrm{b}}$), $4.55\left(2 \mathrm{H}\right.$, complex m, $\mathrm{CH}_{2} \mathrm{OMe}$), $5.26(2 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}$ and $5-\mathrm{H})$, 7.24-7.35 ($20 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H) ; \delta_{\mathrm{C}}(125$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-2\left(\mathrm{br}, \mathrm{C}-1^{\prime}\right), 10.0\left(\mathrm{C}-3^{\prime}\right), 17.5\left(\mathrm{C}-2^{\prime}\right), 51.7$ (OMe), $55.0\left(\mathrm{CH}_{2} \mathrm{OMe}\right), 71.8\left(\mathrm{C}-1^{\prime \prime}\right), 77.5(\mathrm{C}-4 / \mathrm{C}-5), 83.3$ $\left(\mathrm{CPh}_{2} \mathrm{OMe}\right), 95.7\left(\mathrm{CH}_{2} \mathrm{OMe}\right), 127.5(\mathrm{Ar}), 127.6(\mathrm{Ar}), 127.8$ (Ar), 128.0 (Ar), 128.4 (Ar), 129.7 (Ar), 141.2 (Ar), 141.3 (Ar).
(4R,5R,1'S,2'S)-2-[2-(Benzoyloxymethyl)cyclopropyl]-4,5-bis[methoxydiphenylmethyl]-1,3,2-dioxaborolane (10e) and (4R, $5 R, 1^{\prime} R, 2^{\prime} R$)-2-[2-(benzoyloxymethyl)cyclopropyl]-4,5-bis[meth-oxydiphenylmethyl]-1,3,2-dioxaborolane (11e). Yield 96% (general procedure C), white foam (Found: C, 76.95; H, 6.31. $\mathrm{C}_{41} \mathrm{H}_{39} \mathrm{BO}_{6}$ requires C, $77.12 ; \mathrm{H}, 6.16 \%$); IR (film)/ $\mathrm{cm}^{-1} 3039$,

3005, 1358 and $1060 ; \mathrm{m} / \mathrm{z}(\mathrm{FAB}+\mathrm{NaI}) 661(47 \%)\left[(\mathrm{M}+\mathrm{Na})^{+}\right]$ and 197 (100). The diastereoisomers 10e and 11e could not be separated by means of MPLC. The following data were obtained from the mixture.

Major diastereoisomer 10e: NMR $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $-0.62\left(1 \mathrm{H}\right.$, ddd, $J 9.6,6.4$, and $\left.5.3 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right), 0.28(1 \mathrm{H}$, ddd, $J 9.6,5.1$, and $3.7 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}_{c i s}$, , $0.38(1 \mathrm{H}$, ddd, $J 8.2,6.4$, and $\left.3.7 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}_{\text {trans }}\right), 0.68(1 \mathrm{H}$, ddddd, $J 8.2,7.6,6.1$, 5.3 and $\left.5.1 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}\right), 2.81(6 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, $3.71(1 \mathrm{H}$, dd, $J 11.4$ and $\left.7.6,1^{\prime \prime}-\mathrm{H}_{\mathrm{a}}\right), 3.94\left(1 \mathrm{H}\right.$, dd, $J 11.4$ and $\left.6.1,1^{\prime \prime}-\mathrm{H}_{\mathrm{b}}\right), 5.10$ ($2 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}$ and $5-\mathrm{H}$), $7.17-7.39(25 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H)$; δ_{C} (125 MHz ; CDCl_{3}) -2 (br, $\left.\mathrm{C}-1^{\prime}\right), 9.9\left(\mathrm{C}-3^{\prime}\right), 16.4$ (C-2'), 51.7 (OMe), 69.3 (C-1"), 77.6 (C-4/C-5), $83.3\left(\mathrm{CPh}_{2} \mathrm{OMe}\right), 127.2$ (Ar), 127.3 (Ar), 127.5 (Ar), 127.6 (Ar), 127.8 (Ar), 128.3 (Ar), 128.4 (Ar), $129.5(\mathrm{Ar}), 129.7(\mathrm{Ar}), 132.5(\mathrm{Ar}), 141.2(\mathrm{Ar}), 141.3(\mathrm{Ar}), 166.5$ ($\mathrm{C}=\mathrm{O}$).

Minor diastereoisomer 11e: NMR $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $-0.62\left(1 \mathrm{H}\right.$, ddd, $J 10.0,6.2$, and $\left.5.4 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right), 0.00(1 \mathrm{H}$, ddd, $J 7.6,6.3$, and $3.7 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}_{\text {trans }}$), 0.22 (1 H , ddd, $J 10.0,5.1$, and $\left.3.7 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}_{c i s}\right), 1.00(1 \mathrm{H}$, ddddd, $J 7.6,7.4$, 6.6, 5.4 and $\left.5.1 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}\right), 2.81(6 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.75(1 \mathrm{H}$, dd, $J 11.4$ and $\left.7.4,1^{\prime \prime}-\mathrm{H}_{\mathrm{a}}\right), 3.85\left(1 \mathrm{H}\right.$, dd, $J 11.4$ and $\left.6.6,1^{\prime \prime}-\mathrm{H}_{\mathrm{b}}\right)$, $5.10(2 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}$ and $5-\mathrm{H})$, 7.17-7.39 ($25 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); $\delta_{\mathrm{C}}(125$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) $-2\left(\mathrm{br}, \mathrm{C}-1^{\prime}\right), 10.0\left(\mathrm{C}-3^{\prime}\right), 16.7$ (C-2'), 51.7 (OMe), 69.3 ($\mathrm{C}-1^{\prime \prime}$), 77.6 (C-4/C-5), $83.3\left(\mathrm{CPh}_{2} \mathrm{OMe}\right), 127.1$ (Ar), 127.2 (Ar), 127.3 (Ar), 127.7 (Ar), 128.0 (Ar), 128.2 (Ar), 128.6 (Ar), 129.4 (Ar), $129.5(\mathrm{Ar}), 130.3(\mathrm{Ar}), 141.2(\mathrm{Ar}), 141.3$ (Ar), $166.7(\mathrm{C}=\mathrm{O})$.

(S)-(-)-4-(2,2-Dibromoethenyl)-2,2-dimethyl-1,3-dioxolane (15)

By following the procedure as described by Jiang and Ma, ${ }^{28}$ partially racemized product $\mathbf{1 5}$ was obtained. Yield 61%, bp $50^{\circ} \mathrm{C}(0.35$ torr $) ;[a]_{\mathrm{D}}-2.6$ [c 1.1 in MeOH ; lit. ${ }^{54}-3.6$ (c 3.8 in MeOH)] (Found: C, 29.39; H, 3.51; Br, 55.74. $\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{O}_{2} \mathrm{Br}$ requires C, $29.40 ; \mathrm{H}, 3.52 ; \mathrm{Br}, 55.88 \%$); IR (film) $/ \mathrm{cm}^{-1} 2980$, 2936, 1370 and 1040; NMR $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.37(3 \mathrm{H}$, $\mathrm{s}, M e), 1.41(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 3.67(1 \mathrm{H}, \mathrm{dd}, J 8.4$ and 6.5 Hz , $\left.5-\mathrm{H}_{\mathrm{a}}\right), 4.19\left(1 \mathrm{H}\right.$, dd, $J 8.4$ and $\left.6.3 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{b}}\right), 4.71(1 \mathrm{H}$, ddd, $J 7.6,6.5$ and $6.3 \mathrm{~Hz}, 4-\mathrm{H}), 6.52\left(1 \mathrm{H}, \mathrm{d}, J 7.6 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right) ; \delta_{\mathrm{C}}$ ($125 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) 26.0 (Me), 27.9 (Me), 68.4 (C-5), 76.5 (C-4), 93.0 (C-1'), 110.4 (C-2), 137.5 (C-2'); m / z (EI) 284 (2\%), 286 (4) and 288 (2).

(S)-(+)-4-Ethynyl-2,2-dimethyl-1,3-dioxolane (16)

By following the procedure as described by Jiang and Ma, ${ }^{28}$ partially racemized product 16 was obtained. Yield $43 \% ;[a]_{\mathrm{D}}$ 21.1 [c 1.10 in CHCl_{3}; lit. ${ }^{54} 43.0$ (c $1.00 \mathrm{in} \mathrm{CCl}_{4}$) or lit. ${ }^{28} 33.8$ (c 1.00 in CHCl_{3})].

A solution of aldehyde $\mathbf{1 4}^{25-27}(1.03 \mathrm{~g}, 7.90 \mathrm{mmol})$ and the Bestmann-Ohira reagent $\mathbf{1 7}^{30-35}(2.42 \mathrm{~g}, 12.6 \mathrm{mmol})$ in methanol (50 mL) was cooled to $0^{\circ} \mathrm{C}$. Potassium carbonate (2.33 g , 16.8 mmol) was gradually added (30 min). The mixture was stirred for 12 h , allowing it to warm to room temperature. Saturated aqueous ammonium chloride (50 mL) was added and the aqueous solution extracted with pentane $(2 \times 250 \mathrm{~mL})$. The organic layer was separated, dried over magnesium sulfate, and the solvent carefully evaporated under reduced pressure. After purification by flash-column chromatography (eluent pentane-diethyl ether $10: 1$), alkyne 16 ($700 \mathrm{mg}, 5.50 \mathrm{mmol}$; 69%) was isolated as a colourless liquid, $[a]_{\mathrm{D}} 40.6$ (c 1.1 in CHCl_{3}) (Found: C, 66.12; H, 8.02. $\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{O}_{2}$ requires C, 66.65 ; H, 7.99%); IR (film) $/ \mathrm{cm}^{-1} 3290,2990,2940,2120,1370$ and 1065; NMR $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.35(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.47(3 \mathrm{H}$, $\mathrm{s}, M e), 2.47\left(1 \mathrm{H}, \mathrm{d}, J 2.3 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}\right), 3.92(1 \mathrm{H}, \mathrm{dd}, J 8.1$ and 6.2 $\left.\mathrm{Hz}, 5-\mathrm{H}_{\mathrm{a}}\right), 4.14\left(1 \mathrm{H}\right.$, dd, $J 8.1$ and $\left.6.4 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{b}}\right), 4.67(1 \mathrm{H}$, ddd, $J 6.4,6.2$ and $2.3 \mathrm{~Hz}, 4-\mathrm{H})$; $\delta_{\mathrm{C}}\left(125 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 26.3$ (Me), 26.5 (Me), 65.6 (C-5), 70.2 (C-2'), 74.3 (C-4), 81.8 (C-1'), $110.9(\mathrm{C}-2) ; m / z\left(E I\right.$, AUTO -CI) $127.0754\left[(\mathrm{M}+\mathrm{H})^{+} . \mathrm{C}_{7} \mathrm{H}_{11} \mathrm{O}_{2}\right.$ requires 127.0759]; 127 (20\%) and 111 (100).
($\left.4 R, 5 R, 4^{\prime \prime} S\right)$-2-[(E)-2-(2,2-dimethyl-1,3-dioxolan-4-yl)ethenyl]-4,5-bis(methoxydiphenylmethyl)-1,3,2-dioxaborolane (18)
Following the general procedure A, the product $\mathbf{1 8}$ was isolated in 30% yield; general procedure B: yield 80% (route 2), white foam; softening range $=76-79^{\circ} \mathrm{C} ;[a]_{\mathrm{D}}-41.5\left(\right.$ c $\left.1.40 \mathrm{in} \mathrm{CHCl}_{3}\right)$ (Found: C, $75.45 ; \mathrm{H}, 6.80 . \mathrm{C}_{37} \mathrm{H}_{39} \mathrm{BO}_{6}$ requires C, $75.26 ; \mathrm{H}$, 6.66%); IR (film) $/ \mathrm{cm}^{-1} 3058,2937,1379$ and 1075 ; NMR δ_{H} ($500 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $1.27(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.28(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.92$ (6 $\mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.38\left(1 \mathrm{H}, \mathrm{dd}, J 8.1\right.$ and $\left.7.4 \mathrm{~Hz}, 5^{\prime \prime}-\mathrm{H}_{\mathrm{a}}\right), 3.93(1 \mathrm{H}$, dd, $J 8.1$ and $\left.6.5 \mathrm{~Hz}, 5^{\prime \prime}-\mathrm{H}_{\mathrm{b}}\right), 4.30(1 \mathrm{H}$, dddd, $J 7.4,6.5,5.8$ and $\left.1.3 \mathrm{~Hz}, 4^{\prime \prime}-\mathrm{H}\right), 5.25\left(1 \mathrm{H}, \mathrm{dd}, J 18.1\right.$ and $\left.1.3,1^{\prime}-\mathrm{H}\right), 5.28(2 \mathrm{H}, \mathrm{s}$, $4-\mathrm{H}$ and $5-\mathrm{H}), 6.03\left(1 \mathrm{H}, \mathrm{dd}, J 18.1\right.$ and $\left.5.8,2^{\prime}-\mathrm{H}\right), 7.16-7.36$ $(20 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 25.8(\mathrm{Me}), 26.5(\mathrm{Me})$, 51.8 (OMe), 69.0 (C-5"), 77.6, 77.7 (C-4" and C-4/C-5), 83.3 ($\mathrm{CPh}_{2} \mathrm{OMe}$), $110.9\left(\mathrm{C}-2^{\prime \prime}\right), \sim 120$ (br, $\left.\mathrm{C}-1^{\prime}\right), 127.3$ (Ar), 127.3 (Ar), 127.5 (Ar), 127.8 (Ar), 128.4 (Ar), 129.7 (Ar), 141.0 (Ar), 141.3 (Ar), 149.2 (C-2'); m / z (EI) 590 (0.1\%), 575 (2), 558 (2) and 197 (100).

(4S,5S,4"S)-2-[(E)-2-(2,2-Dimethyl-1,3-dioxolan-4-yl)ethenyl]-4,5-bis(methoxydiphenylmethyl)-1,3,2-dioxaborolane (19)

Following the general procedure A, the product $\mathbf{1 8}$ was isolated in 27% yield; general procedure B: yield 50% (route 2), white foam; softening range $=77-80^{\circ} \mathrm{C} ;[a]_{\mathrm{D}}+67.9\left(c 1.10\right.$ in $\left.\mathrm{CHCl}_{3}\right)$ (Found: C, 74.98; H, 6.87. $\mathrm{C}_{37} \mathrm{H}_{39} \mathrm{BO}_{6}$ requires $\mathrm{C}, 75.26 ; \mathrm{H}$, 6.66%); IR (film) $/ \mathrm{cm}^{-1} 3058,2937,1379$ and 1075; NMR δ_{H} ($500 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $1.34(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.43(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.97$ $(6 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.42\left(1 \mathrm{H}, \mathrm{dd}, J 8.1\right.$ and $\left.7.4 \mathrm{~Hz}, 5^{\prime \prime}-\mathrm{H}_{\mathrm{a}}\right), 3.98(1 \mathrm{H}$, dd, $J 8.1$ and $6.5 \mathrm{~Hz}, 5^{\prime \prime}-\mathrm{H}_{\mathrm{b}}$), $4.37(1 \mathrm{H}$, dddd, $J 7.4,6.5,5.8$ and $\left.1.3 \mathrm{~Hz}, 4^{\prime \prime}-\mathrm{H}\right), 5.32\left(1 \mathrm{H}, \mathrm{dd}, J 18.1\right.$ and $\left.1.3,1^{\prime}-\mathrm{H}\right), 5.35(2 \mathrm{H}, \mathrm{s}$, $4-\mathrm{H}$ and $5-\mathrm{H}), 6.10\left(1 \mathrm{H}, \mathrm{dd}, J 18.1\right.$ and $\left.5.8,2^{\prime}-\mathrm{H}\right), 7.24-7.37$ $(20 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 26.2(\mathrm{Me}), 26.9(\mathrm{Me})$, 52.2 (OMe), 69.4 (C-5"), 78.0, 78.1 (C-4" and C-4/C-5), 83.7 ($\mathrm{CPh}_{2} \mathrm{OMe}$), 110.0 ($\mathrm{C}-2^{\prime \prime}$), ~120 (br, $\left.\mathrm{C}-1^{\prime}\right)$, 127.7 (Ar), 127.7 (Ar), 127.9 (Ar), 128.2 (Ar), 128.8 (Ar), 130.1 (Ar), 141.4 (Ar), 141.7 (Ar), 149.6 (C-2'); m/z (EI) 590 (0.1\%), 575 (2), 558 (2) and 197 (100).

(4S')-2-[(E)-2-(2,2-Dimethyl-1,3-dioxolan-4-yl)ethenyl]-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (20)

Yield 56% (route 2 , lit. ${ }^{55} 90 \%$), colourless solid: mp $35^{\circ} \mathrm{C} ;[a]_{\mathrm{D}}$ +35.2 (c 1.10 in CHCl_{3}) (Found: C, 61.47; H, 9.08. $\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{BO}_{4}$ requires C, 61.44; H, 9.12\%); IR (film)/ $\mathrm{cm}^{-1} 2982,2935,1372$ and 1062; NMR $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.23(6 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.24$ ($6 \mathrm{H}, \mathrm{s}, M e$), 1.36 ($3 \mathrm{H}, \mathrm{s}, M e$), $1.40(3 \mathrm{H}, \mathrm{s}, M e), 3.61(1 \mathrm{H}$, dd, $J 8.2$ and $\left.7.5 \mathrm{~Hz}, 5^{\prime \prime}-\mathrm{H}_{\mathrm{a}}\right), 4.08\left(1 \mathrm{H}, \mathrm{dd}, J 8.2\right.$ and $\left.6.4 \mathrm{~Hz}, 5^{\prime \prime}-\mathrm{H}_{\mathrm{b}}\right)$, $4.37\left(1 \mathrm{H}\right.$, dddd, $J 7.5,6.4,6.4$ and $\left.1.2 \mathrm{~Hz}, 4^{\prime \prime}-\mathrm{H}\right), 5.64(1 \mathrm{H}$, dd, $J 18.0$ and $\left.1.2,1^{\prime}-\mathrm{H}\right), 6.52\left(1 \mathrm{H}\right.$, dd, $J 18.0$ and $\left.6.4,2^{\prime}-\mathrm{H}\right) ; \delta_{\mathrm{C}}$ ($125 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $24.7(2 \times \mathrm{Me}), 24.8(2 \times \mathrm{Me}), 25.9(\mathrm{Me})$, $26.5(\mathrm{Me}), 69.0\left(\mathrm{C}-5^{\prime \prime}\right), 78.0\left(\mathrm{C}-4^{\prime \prime}\right), 83.4\left(2 \times \mathrm{Me}_{2} \mathrm{CO}\right), 109.6$ (C-2"), ~ 121 (br, C-1'), 149.5 (C-2'); m / z (EI) 253 (21\%), 197 (49) and 101 (100).
(4R,5R,1'S,2'S,4"S)-2-[2-(2,2-Dimethyl-1,3-dioxolan-4-yl)-cyclopropyl]-4,5-bis(methoxydiphenylmethyl)-1,3,2-dioxaborolane (21) and (4R,5R, $1^{\prime} R, 2^{\prime} R, 4^{\prime \prime} S$)-2-[2-(2,2-dimethyl-1,3-dioxolan-4-yl)cyclopropyl]-4,5-bis(methoxydiphenylmethyl)-1,3,2-dioxaborolane (22)
Following the general procedure C , the product $\mathbf{2 1 / 2 2}$ was isolated in 93% yield as a $83: 17$ mixture; general procedure D : yield 58% (dr 11:89), white foam (Found: C, 75.59; H, 7.03. $\mathrm{C}_{38} \mathrm{H}_{41} \mathrm{BO}_{6}$ requires C, 75.50 ; H, 6.84\%); IR (film) $/ \mathrm{cm}^{-1} 3058$, 2937, 1369 and 1076; m/z (EI) $604.2996\left[(\mathrm{M})^{+} . \mathrm{C}_{38} \mathrm{H}_{41} \mathrm{BO}_{6}\right.$ requires 604.2996]; $604(0.1 \%)$ and 197 (100). The diastereoisomers 21 and 22 were separated by means of MPLC (2% ethyl acetate in petroleum ether).

Compound 21 (first eluted): mp $142^{\circ} \mathrm{C}$; []$_{\mathrm{D}}-35.1$ (c 1.00 in $\left.\mathrm{CHCl}_{3}\right) ;$ NMR $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-0.48(1 \mathrm{H}$, ddd, $J 9.6$,
6.4 , and $\left.5.1 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right), 0.24\left(1 \mathrm{H}\right.$, ddd, $J 9.6,5.2$, and $3.6 \mathrm{~Hz}, 3^{\prime}-$ $\mathrm{H}_{\text {cis }}$), $0.35\left(1 \mathrm{H}\right.$, ddd, $J 8.0,6.4$, and $\left.3.6 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}_{\text {trans }}\right), 0.55$ (1 H , dddd, $J 8.0,7.4,5.2$ and $\left.5.1 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}\right), 1.21(3 \mathrm{H}, \mathrm{s}, M e)$, $1.34(3 \mathrm{H}, \mathrm{s}, M e), 2.92(6 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.32(1 \mathrm{H}$, ddd, $J 7.8,7.4$ and $\left.6.0 \mathrm{~Hz}, 4^{\prime \prime}-\mathrm{H}\right), 3.42\left(1 \mathrm{H}, \mathrm{dd}, J 7.8\right.$ and $\left.7.8 \mathrm{~Hz}, 5^{\prime \prime}-\mathrm{H}_{\mathrm{a}}\right), 3.86$ $\left(1 \mathrm{H}, \mathrm{dd}, J 7.8\right.$ and $\left.6.0 \mathrm{~Hz}, 5^{\prime \prime}-\mathrm{H}_{\mathrm{b}}\right), 5.17(2 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}$ and $5-\mathrm{H})$, 7.16-7.29 ($20 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); $\delta_{\mathrm{C}}\left(125 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-2(\mathrm{br}, \mathrm{C}-1$ '), 7.6 (C-3'), 19.4 (C-2'), 25.6 (Me), 26.8 (Me), 51.7 (OMe), 69.0 (C-5"), 77.7 (C-4/C-5), 80.0 (C-4"), 83.3 ($\left.\mathrm{CPh}_{2} \mathrm{OMe}\right), 108.7$ (C-2"), 127.1 (Ar), 127.4 (Ar), 127.5 (Ar), 127.7 (Ar), 128.3 (Ar), 129.7 (Ar), 141.2 (Ar), 141.4 (Ar).

Compound 22 (second eluted): mp $130^{\circ} \mathrm{C}$; $[a]_{\mathrm{D}}-75.1$ (c 1.10 in $\left.\mathrm{CHCl}_{3}\right) ; \mathrm{NMR} \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-0.68(1 \mathrm{H}$, ddd, $J 9.9$, 6.1 , and $\left.5.5 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right), 0.11(1 \mathrm{H}$, ddd, $J 7.5,6.2$, and 3.7 Hz , $\left.3^{\prime}-\mathrm{H}_{\text {trans }}\right), 0.33\left(1 \mathrm{H}\right.$, ddd, $J 9.9,5.0$, and $\left.3.7 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}_{\text {cis }}\right), 0.81$ (1 H , dddd, $J 8.4,7.5,5.5$ and $5.0 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}$), $1.20(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), $1.30(3 \mathrm{H}, \mathrm{s}, M e), 2.92(6 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.26(1 \mathrm{H}$, ddd, $J .4,7.4$ and $\left.6.1 \mathrm{~Hz}, 4^{\prime \prime}-\mathrm{H}\right), 3.63\left(1 \mathrm{H}, \mathrm{dd}, J 7.8\right.$ and $7.8 \mathrm{~Hz}, 5^{\prime \prime}-\mathrm{H}_{\mathrm{a}}$), 3.82 $\left(1 \mathrm{H}, \mathrm{dd}, J 7.8\right.$ and $\left.6.0 \mathrm{~Hz}, 5^{\prime \prime}-\mathrm{H}_{\mathrm{b}}\right)$, $5.20(2 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}$ and $5-\mathrm{H})$, 7.19-7.25 ($20 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H$); $\delta_{\mathrm{C}}\left(125 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) - $2(\mathrm{br}, \mathrm{C}-1$ '), 9.8 (C-3'), 19.7 (C-2'), 25.6 (Me), 26.8 (Me), 51.7 (OMe), 69.2 (C-5"), 77.5 (C-4/C-5), 81.2 (C-4"), $83.3\left(\mathrm{CPh}_{2} \mathrm{OMe}\right), 108.9$ (C-2"), 127.3 (Ar), 127.3 (Ar), 127.5 (Ar), 127.8 (Ar), 128.4 (Ar), 129.7 (Ar), 141.2 (Ar), 141.2 (Ar).
(4S,5S,1' $R, 2^{\prime} R, 4^{\prime \prime} S$)-2-[2-(2,2-Dimethyl-1,3-dioxolan-4-yl)cyclo-propyl]-4,5-bis(methoxydiphenylmethyl)-1,3,2-dioxaborolane (23) and ($4 S, 5 S, 1^{\prime} S, 2^{\prime} S, 4^{\prime \prime} S$)-2-[2-(2,2-dimethyl-1,3-dioxolan-4-yl)cyclopropyl]-4,5-bis(methoxydiphenylmethyl)-1,3,2-dioxaborolane (24)
Following the general procedure C , the product $\mathbf{2 3 / 2 4}$ was isolated in 95% yield as a $50: 50$ mixture; general procedure D: yield 72% (dr 94:6), white foam (Found: C, 75.18; H, 7.07. $\mathrm{C}_{38} \mathrm{H}_{41} \mathrm{BO}_{6}$ requires C, $75.50 ; \mathrm{H}, 6.84 \%$); IR (film) $/ \mathrm{cm}^{-1} 3058$, 2937, 1370 and 1076; m/z (EI) $604.2996\left[(M)^{+} . \mathrm{C}_{38} \mathrm{H}_{41} \mathrm{BO}_{6}\right.$ requires 604.2996]; $604(0.1 \%), 572(0.1)$ and 197 (100). The diastereoisomers 23 and $\mathbf{2 4}$ were separated by means of MPLC (2% ethyl acetate in petroleum ether).

Compound 23 (second eluted): mp $120{ }^{\circ} \mathrm{C}$; $[a]_{\mathrm{D}} 40.0$ (c 1.00 in $\left.\mathrm{CHCl}_{3}\right) ; \mathrm{NMR} \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-0.68(1 \mathrm{H}, \mathrm{ddd}, J 9.8$, 6.3 , and $\left.5.4 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right), 0.40\left(1 \mathrm{H}, \mathrm{ddd}, J 9.8,5.0\right.$, and $3.6 \mathrm{~Hz}, 3^{\prime}-$ $\left.\mathrm{H}_{c i s}\right), 0.48\left(1 \mathrm{H}\right.$, ddd, $J 7.5,6.3$, and $\left.3.6 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}_{\text {trann }}\right)$, 0.59 (1 H , dddd, J 8.1, 7.5, 5.4 and $\left.5.0 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}\right), 1.21(3 \mathrm{H}, \mathrm{s}, M e)$, $1.32(3 \mathrm{H}, \mathrm{s}, M e), 2.92(6 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.16(1 \mathrm{H}$, ddd, $J 8.1,7.2$ and $\left.6.1 \mathrm{~Hz}, 4^{\prime \prime}-\mathrm{H}\right), 3.49\left(1 \mathrm{H}\right.$, dd, $J 8.0$ and $\left.7.2 \mathrm{~Hz}, 5^{\prime \prime}-\mathrm{H}_{\mathrm{a}}\right), 3.86$ $\left(1 \mathrm{H}\right.$, dd, $J 8.0$ and $\left.6.1 \mathrm{~Hz}, 5^{\prime \prime}-\mathrm{H}_{\mathrm{b}}\right)$, $5.20(2 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}$ and $5-\mathrm{H})$, 7.16-7.25 ($20 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H$); $\delta_{\mathrm{C}}\left(125 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-4\left(\mathrm{br}, \mathrm{C}-1{ }^{\prime}\right)$, 9.4 (C-3'), 19.5 (C-2'), 25.6 (Me), 26.8 (Me), 51.7 (OMe), 69.3 (C-5"), 77.6 (C-4/C-5), 80.9 (C-4"), 83.3 ($\left.\mathrm{CPh}_{2} \mathrm{OMe}\right), 108.8$ (C-2"), 127.3 (Ar), 127.3 (Ar), 127.5 (Ar), $127.8(\mathrm{Ar}), 128.4$ (Ar), 129.7 (Ar), 141.3 (Ar), 141.3 (Ar).

Compound 24 (first eluted): $\mathrm{mp} 100-102^{\circ} \mathrm{C}$; $[a]_{\mathrm{D}} 88.3$ (c 1.00 in $\left.\mathrm{CHCl}_{3}\right)$; NMR $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-0.51(1 \mathrm{H}$, ddd, $J 10.0,6.2$, and $\left.5.6 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right),-0.04(1 \mathrm{H}, \mathrm{ddd}, J 8.0,6.2$, and $3.6 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}_{\text {trans }}$), $0.21(1 \mathrm{H}$, ddd, $J 10.0,5.2$, and 3.6 Hz , $\left.3^{\prime}-\mathrm{H}_{\text {cis }}\right), 0.79\left(1 \mathrm{H}\right.$, complex m, $\left.2^{\prime}-\mathrm{H}\right), 1.20(3 \mathrm{H}, \mathrm{s}, M e), 1.25$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), $2.93(6 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.36-3.38\left(2 \mathrm{H}, \mathrm{m}, 4^{\prime \prime}-\mathrm{H}\right.$ and $\left.5^{\prime \prime}-\mathrm{H}_{\mathrm{a}}\right), 3.82-3.84\left(1 \mathrm{H}, \mathrm{m}, 5^{\prime \prime}-\mathrm{H}_{\mathrm{b}}\right), 5.17(2 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}$ and $5-\mathrm{H})$, 7.16-7.27 ($20 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); $\delta_{\mathrm{C}}\left(125 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-2(\mathrm{br}, \mathrm{C}-1$ '), 7.7 (C-3'), 19.9 (C-2'), 25.6 (Me), 26.7 (Me), 51.7 (OMe), 68.8 (C-5"), 77.5 (C-4/C-5), 79.5 (C-4"), 83.2 ($\mathrm{CPh}_{2} \mathrm{OMe}$), 108.6 (C-2"), 127.2 (Ar), 127.4 (Ar), 127.5 (Ar), 127.7 (Ar), 128.3 (Ar), 129.7 (Ar), 141.2 (Ar), 141.3 (Ar).
($1^{\prime} R, 2^{\prime} R, \mathbf{4}^{\prime \prime} S$)-2-[2-(2,2-Dimethyl-1,3-dioxolan-4-yl)cyclo-propyl]-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (25) and ($1^{\prime} S, 2^{\prime} S, 4^{\prime \prime} S$)-2-[2-(2,2-dimethyl-1,3-dioxolan-4-yl)cyclopropyl]-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (26)
Following the general procedure C , the product $\mathbf{2 5 / 2 6}$ was
isolated in 69% yield as a $60: 40$ mixture; general procedure D: yield 60% (dr $95: 5$), colourless oil. The diastereoisomers 25 and $\mathbf{2 6}$ could not be separated and fully purified; all data were obtained from the mixtures. IR (film) $/ \mathrm{cm}^{-1} 2982,2935,1380$ and 1067; m/z (EI, AUTO-CI) $269.1928\left[(\mathrm{M}+\mathrm{H})^{+} . \mathrm{C}_{14} \mathrm{H}_{26} \mathrm{BO}_{4}\right.$ requires 269.1924]; 269 (25%) and 253 (100).
Compound 25: NMR $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-0.28(1 \mathrm{H}$, ddd, $J 9.8,6.3$, and $\left.5.4 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right), 0.67(1 \mathrm{H}$, ddd, $J 9.8,5.0$, and $\left.3.7 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}_{\text {cis }}\right), 0.79\left(1 \mathrm{H}\right.$, ddd, $J 7.6,6.3$, and $3.7 \mathrm{~Hz}, 3^{\prime}-$ $\left.\mathrm{H}_{\text {trans }}\right)$, $1.13\left(1 \mathrm{H}\right.$, complex m, $\left.2^{\prime}-\mathrm{H}\right), 1.18(12 \mathrm{H}, \mathrm{br} \mathrm{s}, 4 \times \mathrm{Me})$, $1.31(3 \mathrm{H}, \mathrm{s}, M e), 1.41(3 \mathrm{H}, \mathrm{s}, M e), 3.38$ (1 H , dddd, $J 8.4,7.2$, 6.1 and $\left.1.2 \mathrm{~Hz}, 4^{\prime \prime}-\mathrm{H}\right)$, $3.67\left(1 \mathrm{H}\right.$, dd, $J 8.2$ and $\left.7.2 \mathrm{~Hz}, 5^{\prime \prime}-\mathrm{H}_{\mathrm{a}}\right)$, $4.03\left(1 \mathrm{H}, \mathrm{dd}, J 8.2\right.$ and $\left.6.1 \mathrm{~Hz}, 5^{\prime \prime}-\mathrm{H}_{\mathrm{b}}\right) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ -3.5 (br, C-1'), 9.2 (C-3'), 19.9 (C-2'), $24.6(4 \times \mathrm{Me}), 25.7$ (Me), 26.8 (Me), 69.6 (C-5"), 81.1 (C-4"), $83.1\left(2 \times \mathrm{Me}_{2} \mathrm{CO}\right)$, 109.0 (C-2").

Compound 26: NMR $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-0.02(1 \mathrm{H}$, ddd, $J 9.8,6.3$, and $\left.5.1 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right), 0.54(1 \mathrm{H}, \mathrm{ddd}, J 9.8,5.1$, and $\left.3.7 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}_{c i s}\right), 0.63(1 \mathrm{H}$, ddd, $J 8.0,6.3$, and 3.7 Hz , $\left.3^{\prime}-\mathrm{H}_{\text {trans }}\right), 1.11-1.16\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right), 1.17(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{Me}), 1.18$ ($6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{Me}$), $1.23(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.38$ ($6 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 3.51$ $\left(1 \mathrm{H}\right.$, ddd $, J 7.5,6.0$ and $\left.6.0 \mathrm{~Hz}, 4^{\prime \prime}-\mathrm{H}\right), 3.64(1 \mathrm{H}$, dd, $J 8.0$ and $\left.7.5 \mathrm{~Hz}, 5^{\prime \prime}-\mathrm{H}_{\mathrm{a}}\right), 4.01\left(1 \mathrm{H}, \mathrm{dd}, J 8.0\right.$ and $\left.6.0 \mathrm{~Hz}, 5^{\prime \prime}-\mathrm{H}_{\mathrm{b}}\right)$) $\delta_{\mathrm{C}}(125$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) -1.5 (br, C-1'), 7.4 (C-3'), 19.5 (C-2'), 24.5 $(4 \times \mathrm{Me}), 24.7(\mathrm{Me}), 25.8(\mathrm{Me}), 69.2\left(\mathrm{C}-5^{\prime \prime}\right), 80.3\left(\mathrm{C}-4^{\prime \prime}\right), 83.0$ ($2 \times \mathrm{Me}_{2} \mathrm{CO}$), 108.9 (C-2").

($1^{\prime} R, 2^{\prime} R, 4^{\prime \prime} S$)-[2-(2,2-dimethyl-1,3-dioxolan-4-yl)cyclopropyl]methanol (27)

Cyclopropylboronic ester 25 ($287 \mathrm{mg}, 1.00 \mathrm{mmol}$) and chloroiodomethane ($0.15 \mathrm{~mL}, 2.00 \mathrm{mmol}$) were dissolved in tetrahydrofuran and the solution cooled to $-78^{\circ} \mathrm{C}$. Butyllithium $(1.25 \mathrm{~mL}$ of a 1.6 M solution in hexane, 2.00 mmol) was slowly added, the reaction mixture warmed up to room temperature and stirred for 2 d . A $1: 1$ mixture of 30% hydrogen peroxide and 3 M aqueous sodium hydroxide (5 mL) was carefully added and stirring continued until TLC indicated complete consumption of the intermediate. Dilution with diethyl ether (10 mL) was followed by the addition of a saturated aqueous ammonium chloride solution (5 mL). After extraction of the aqueous layer, drying with magnesium sulfate and evaporation of the organic solvents under reduced pressure, the crude product was subjected to flash-column chromatography (petroleum etherethyl acetate $4: 1$ to $1: 1$). Yield $67 \%(\mathrm{dr}>95: 5)$, colourless oil. The spectroscopic data were in full agreement with published data. ${ }^{42}[a]_{\mathrm{D}}-13\left(c 1.7\right.$ in CHCl_{3}); IR (film) $/ \mathrm{cm}^{-1} 3424,2987$, 1372 and 1064; m/z (EI, AUTO-CI) $173.1172\left[(\mathrm{M}+1)^{+}\right.$. $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{3}$ requires 173.1178]; 173 (15%) and 157 (100); NMR $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.53(1 \mathrm{H}$, ddd, $J 8.3,5.1$, and 5.0 Hz , $\left.3^{\prime}-\mathrm{H}_{\text {trans }}\right), 0.60\left(1 \mathrm{H}\right.$, ddd, $J 8.5,5.1$, and $\left.5.0 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}_{\text {cis }}\right), 0.84$ (1 H , dddd, $J 8.3,7.8,5.1$, and $4.3 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}$), 0.99 (1 H , ddddd, $J 8.5,6.9,6.8,5.1$, and $\left.4.3 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right), 1.27$ ($3 \mathrm{H}, \mathrm{s}, ~ M e$), 1.37 $(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.79(1 \mathrm{H}, \mathrm{br} s, \mathrm{OH}), 3.40(1 \mathrm{H}, \mathrm{dd}, J 11.2$ and 6.9 $\left.\mathrm{Hz}, 1-\mathrm{H}_{\mathrm{a}}\right), 3.46\left(1 \mathrm{H}, \mathrm{dd}, J 11.2\right.$ and $\left.6.8 \mathrm{~Hz}, 1-\mathrm{H}_{\mathrm{b}}\right), 3.57(1 \mathrm{H}$, ddd, $J 7.8,7.2$, and $\left.5.9 \mathrm{~Hz}, 4^{\prime \prime}-\mathrm{H}\right), 3.64(1 \mathrm{H}, \mathrm{dd}, J 8.0$ and 7.2 $\left.\mathrm{Hz}, 5^{\prime \prime}-\mathrm{H}_{\mathrm{a}}\right), 4.04\left(1 \mathrm{H}, \mathrm{dd}, J 8.0\right.$ and $\left.5.9 \mathrm{~Hz}, 5^{\prime \prime}-\mathrm{H}_{\mathrm{b}}\right) ; \delta_{\mathrm{C}}(125$ MHz; CDCl_{3}) 7.9 (C-3'), 17.8 (C-3'), 19.0, 19.1 (C-1'/C-2'), 25.6 (Me), 26.7 (Me), 65.8 (C-1), 69.1 (C-5"), 79.0 (C-4"), 108.02 (C-2").

Acknowledgements

Financial support by the Fonds der Chemischen Industrie (Liebig-fellowship for J. P.) and the Deutschen Forschungsgemeinschaft (fellowship for J. P.) is gratefully acknowledged. We also thank the Institut für Organische Chemie der Universität Stuttgart (Professor Dr Dr h. c. F. Effenberger and Professor Dr V. Jäger), the Bayer AG (Wuppertal), Aventis Pharma Deutschland GmbH (Frankfurt/Main), Novartis AG (Basel), the Boehringer Ingelheim KG (Biberach), the Degussa

AG (Hanau), and the Clariant GmbH (Frankfurt/Main) for their support.

References

1 Y. N. Bubnov, O. A. Nesmeyanova, T. Y. Rudashevskaya, B. M. Mikhailov and B. A. Kazansky, Tetrahedron Lett., 1971, 2153.

2 R. L. Danheiser and A. C. Savoca, J. Org. Chem., 1985, 50, 2401.
3 P. Fontani, B. Carboni, M. Vaultier and R. Carrié, Tetrahedron Lett., 1989, 30, 4815.
4 P. Fontani, B. Carboni, M. Vaultier and G. Maas, Synthesis, 1991, 605.

5 J. P. Hildebrand and S. P. Marsden, Synlett, 1996, 893.
6 Z. Wang and M.-Z. Deng, J. Chem. Soc., Perkin Trans. 1, 1996, 2663.

7 A. B. Charette and R. P. De Freitas-Gil, Tetrahedron Lett., 1997, 38, 2809.

8 J. Pietruszka and M. Widenmeyer, Synlett, 1997, 977.
9 S.-M. Zhou, M.-Z. Deng, L.-J. Xia and M.-H. Tang, Angew. Chem., 1998, 110, 3061; Angew. Chem., Int. Ed., 1998, 37, 2845.
10 S.-M. Zhou, Y.-L. Yan and M.-Z. Deng, Synlett, 1998, 198.
11 J. E. A. Luithle and J. Pietruszka, J. Org. Chem., 1999, 64, 8287.
12 H. Chen and M.-Z. Deng, J. Chem. Soc., Perkin Trans. 1, 2000, 1609.

13 H. Chen and M.-Z. Deng, J. Org. Chem., 2000, 65, 4444.
14 H. Chen and M.-Z. Deng, Org. Lett., 2000, 2, 1649.
15 M.-L. Yao and M.-Z. Deng, New J. Chem., 2000, 24, 425.
16 T. Imai, H. Mineta and S. Nishida, J. Org. Chem., 1990, 55, 4986.
17 J. E. A. Luithle and J. Pietruszka, Eur. J. Org. Chem., 2000, 2557.
18 J. E. A. Luithle and J. Pietruszka, Liebigs Ann./Recl., 1997, 2297.
19 J. E. A. Luithle, J. Pietruszka and A. Witt, Chem. Commun., 1998, 2651.

20 M. Vaultier, F. Truchet, B. Carboni, R. W. Hoffmann and I. Denne, Tetrahedron Lett., 1987, 28, 4169.
21 R. W. Hoffmann and S. Dresely, Synthesis, 1988, 103.
22 R. Köster and Y. Morita, Liebigs Ann. Chem., 1967, 704, 70.
23 G. Zweifel, G. M. Clark and N. L. Polston, J. Am. Chem. Soc., 1971, 93, 3395.
24 J. A. Miller and G. Zweifel, Synthesis, 1981, 288.
25 G. J. F. Chittenden, Carbohydr. Res., 1980, 84, 350.
26 B. Häfele and V. Jäger, Liebigs Ann. Chem., 1987, 85.
27 J. S. Elder, J. Mann and E. B. Walsh, Tetrahedron, 1985, 41, 3117.
28 B. Jiang and P. Ma, Synth. Commun., 1995, 25, 3641.

29 E. J. Corey and P. L. Fuchs, Tetrahedron Lett., 1972, 3769.
30 S. Müller, B. Liepold, G. J. Roth and H. J. Bestmann, Synlett, 1996, 521.

31 S. Ohira, Synth. Commun., 1989, 19, 561.
32 M. Kitamura, M. Tokunaga and R. Noyori, J. Am. Chem. Soc., 1995, 117, 2931.
33 J. S. Baum and D. A. Shook, Synth. Commun., 1987, 17, 1709.
34 D. G. Brown, E. J. Velthuisen, J. R. Commerford, R. G. Brisbois and T. R. Hoye, J. Org. Chem., 1996, 61, 2540.

35 P. Callant, L. D'Haenens and M. Vandewalle, Synth. Commun., 1984, 14, 155.
36 H. E. Simmons and R. D. Smith, J. Am. Chem. Soc., 1958, 80, 5323.
37 H. E. Simmons and R. D. Smith, J. Am. Chem. Soc., 1959, 81, 4256.
38 H. E. Simmons, T. L. Cairns, S. A. Vladuchick and C. M. Hoiness, Org. React. (N. Y.), 1973, 20, 1.
39 J. Furukawa, N. Kawabata and J. Nishimura, Tetrahedron Lett., 1966, 3353.
40 J. Furukawa, N. Kawabata and J. Nishimura, Tetrahedron, 1968, 53.
41 K. M. Sadhu and D. S. Matteson, Organometallics, 1985, 4, 1687.
42 S. Varadarajan, D. K. Mohapatra and A. Datta, Tetrahedron Lett., 1998, 39, 5667.
43 L. Ren and C. M. Crudden, Chem. Commun., 2000, 721.
44 S. Varadarajan, D. K. Mohapatra and A. Datta, Tetrahedron Lett., 1998, 39, 1075.
45 Y. Seo, K. W. Cho, J.-R. Rho and J. Shin, Tetrahedron, 1996, 52, 10583.

46 K. Toshima, K. Ohta, A. Ohashi, T. Nakamura, M. Nakata, K. Tatsuta and S. Matsumura, J. Am. Chem. Soc., 1995, 117, 4822.

47 D. L. Boger and M. S. S. Palanki, J. Am. Chem. Soc., 1992, 114, 9318.

48 S. F. Martin, B. Benage, S. A. Williamson and S. P. Brown, Tetrahedron, 1986, 42, 2903.
49 G. Heinisch, W. Holzer and C. Obala, Monatsh. Chem., 1988, 119, 253.

50 J. A. Moore and D. E. Reed, Org. Synth., 1973, Coll. Vol. V, 351.
51 P. Lombardi, Chem. Ind. (London), 1990, 708.
52 S. Moss, Chem. Ind. (London), 1994, 122.
53 For the safe handling of diazomethane with the help of a syringepump, all tubing, fittings and joints were made from Teflon; metals must be omitted.
54 E. C. Taylor, P. S. Ray and I. S. Darwish, J. Am. Chem. Soc., 1989, 111, 7664.
55 P. Ma and B. Jiang, WO Pat. Appl. 98/01453 (Chem. Abstr., 1998, 128, 115078).

